Parallelization of the Lyapunov Constants and Cyclicity for Centers of Planar Polynomial Vector Fields

نویسندگان

  • HAIHUA LIANG
  • JOAN TORREGROSA
چکیده

Christopher in 2006 proved that under some assumptions the linear parts of the Lyapunov constants with respect to the parameters give the cyclicity of an elementary center. This paper is devote to establish a new approach, namely parallelization, to compute the linear parts of the Lyapunov constants. More concretely, it is showed that parallelization computes these linear parts in a shorter quantity of time than other traditional mechanisms. To show the power of this approach, we study the cyclicity of the holomorphic center ż = iz + z + z + · · · + z under general polynomial perturbations of degree n, for n ≤ 13. We also exhibit that, from the point of view of computation, among the Hamiltonian, time-reversible, and Darboux centers, the holomorphic center is the best candidate to obtain high cyclicity examples of any degree. For n = 4, 5, . . . , 13, we prove that the cyclicity of the holomorphic center is at least n +n−2. This result give the highest lower bound for M(6),M(7), . . . ,M(13) among the existing results, where M(n) is the maximum number of limit cycles bifurcating from an elementary monodromic singularity of polynomial systems of degree n. As a direct corollary we also obtain the highest lower bound for the Hilbert numbers H(6) ≥ 40, H(8) ≥ 70, and H(10) ≥ 108, because until now the best result was H(6) ≥ 39, H(8) ≥ 67, and H(10) ≥ 100.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

On the Centers of the Weight–homogeneous Polynomial Vector Fields on the Plane

We classify all the centers of a planar weight–homogeneous polynomial vector field of weight degree 1, 2, 3 and 4.

متن کامل

Ten Limit Cycles in a Quintic Lyapunov System

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small ...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015